Epileptiform activity interferes with proteolytic processing of Reelin required for dentate granule cell positioning.

نویسندگان

  • Stefanie Tinnes
  • Michael K E Schäfer
  • Armin Flubacher
  • Gert Münzner
  • Michael Frotscher
  • Carola A Haas
چکیده

The extracellular matrix protein Reelin is an essential regulator of neuronal migration and lamination in the developing and mature brain. Lack of Reelin causes severe disturbances in cerebral layering, such as the reeler phenotype and granule cell dispersion in temporal lobe epilepsy. Reelin is synthesized and secreted by Cajal-Retzius cells and GABAergic interneurons, and its function depends on proteolytic cleavage after secretion. The mechanisms regulating these processes are largely unknown. Here, we used rat hippocampal slice cultures to investigate the effect of neuronal activation and hyperexcitation on Reelin synthesis, secretion, and proteolytic processing. We show that enhanced neuronal activity does not modulate Reelin synthesis or secretion. Moreover, we found that intracellular Reelin resides predominantly in the endoplasmic reticulum before it is constitutively secreted via the early secretory pathway. Epileptiform activity, however, impairs the proteolytic processing of Reelin and leads to accumulation of Reelin in the extracellular matrix. We found that both conditions, epileptiform activity and impaired proteolytic cleavage of Reelin, cause granule cell dispersion via inhibition of metalloproteinases. Taken together, our results strongly suggest that secretion of Reelin is activity-independent and that proteolytic processing of Reelin is required for the maintenance of granule cell lamination in the dentate gyrus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reelin is a positional signal for the lamination of dentate granule cells.

Reelin is required for the proper positioning of neurons in the cerebral cortex. In the reeler mutant lacking reelin, the granule cells of the dentate gyrus fail to form a regular, densely packed cell layer. Recent evidence suggests that this defect is due to the malformation of radial glial processes required for granule cell migration. Here, we show that recombinant reelin in the medium signi...

متن کامل

Exogenous reelin prevents granule cell dispersion in experimental epilepsy.

Temporal lobe epilepsy (TLE) is often accompanied by granule cell dispersion (GCD), a migration defect of granule cells in the dentate gyrus. We have previously shown that a decrease in the expression of reelin, an extracellular matrix protein important for neuronal positioning, is associated with the development of GCD in TLE patients. Here, we used unilateral intrahippocampal injection of kai...

متن کامل

Epilepsy-induced motility of differentiated neurons.

Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs ...

متن کامل

Complexity of Epileptiform Activity in a Neuronal Network and Pharmacological Intervention

Neuronal outputs are complex signals of dynamically integrated excitatory and inhibitory components. Decreased synaptic inhibition in a neuronal network increases excitability and multiple spiking in neurons. Synchronized multiple spiking among a neuronal population further generates rhythmic field potentials and this epileptiform activity can propagate in the brain and cause seizures. Pharmaco...

متن کامل

Reelin and Notch1 cooperate in the development of the dentate gyrus.

The development of the hippocampal dentate gyrus is a complex process in which several signaling pathways are involved and likely interact with each other. The extracellular matrix molecule Reelin is necessary both for normal development of the dentate gyrus radial glia and neuronal migration. In Reelin-deficient Reeler mice, the hippocampal radial glial scaffold fails to form, and granule cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2011